Variational Monte Carlo

- Historically first quantum simulation method
- Slater-Jastrow trial function
- Calculations of properties: g(r) S(k) n(k).
- Examples: electron gas.
- Wavefunctions for Quantum solids
- Ewald Sums for Charged systems

First Major QMC Calculation

- VMC calculation of ground state of liquid helium 4.
- Applied MC techniques from classical liquid theory.
- Ceperley, Chester and Kalos (1976) generalized to fermions.

Ground State of Liquid He

W. L. McMillan
Department of Physics, University of Illinois, Urbana, Illinois
(Received 16 November 1964)

The properties of the ground state of liquid He are studied using a variational wave function of the form \(\Pi_{\text{eff}}(\rho) \). The Lennard Jones 12-6 potential is used with parameters determined from the gas data by de Heer and McMillan. The configuration space integrals are performed by a Monte Carlo technique for 32 and 108 atoms in a cube with periodic boundary conditions. With \(\langle \rho \rangle = 0.64 \text{ atoms} / \text{cubic nm}^3 \), the ground-state energy is found to be \(-0.88 \times 10^{-2} \text{ ergs/atom} \), which is 3% above the experimental value. The liquid structure factor and the two-particle correlation function are in reasonably good agreement with the x-ray and neutron scattering experiments.

- Zero temperature (single state) method
- Can be generalized to finite temperature by using “trial” density matrix instead of “trial” wavefunction.
Notation

- Individual coordinate of a particle \(r_i \)
- All 3N coordinates \(R = (r_1, r_2, \ldots, r_N) \)
- Total potential energy = \(V(R) \)
- Kinetic energy: \(-\lambda \sum_{i=1}^{N} \nabla_i^2 \) where \(\lambda = \frac{\hbar^2}{2m} \)
- Hamiltonian: \(\hat{H} = \hat{T} + \hat{V} \)

Variational Monte Carlo (VMC)

- Variational Principle. Given an appropriate trial function:
 - Continuous
 - Proper symmetry
 - Normalizable
 - Finite variance
- Quantum chemistry uses a product of single particle functions
- With MC we can use any “computable” function.
- Sample \(R \) from \(|\psi|^2 \) using MCMC.
- Take average of local energy:
 - Error in energy is 2nd order
- Better wavefunction, lower variance!
 “Zero variance” principle. (non-classical)
Spin & real vs. complex

- How do we treat spin in QMC?
- For extended systems we use the S_z representation.
- We have a fixed number of up and down electrons and we antisymmetrize among electrons with the same spin.
- This leads to 2 Slater determinants.
- For a given trial function, its real part is also a trial function (but it may have different symmetries), for example momentum
 \[
 (e^{i\mathbf{k}\mathbf{r}}, e^{-i\mathbf{k}\mathbf{r}}) \text{ or } (\cos(k\mathbf{r}), \sin(k\mathbf{r}))
 \]
- For the ground state, without magnetic fields or spin-orbit interaction we can always work with real functions.
- However, it may be better to work with complex functions, in some cases.

Two electron (bose) ground state.

- Assume spin $\frac{1}{2}$ fermions (or bosons).
- Total wf is antisymmetric.
- Assume spin function is a singlet ($\uparrow\downarrow - \downarrow\uparrow$)
- Then spatial wavefunction is symmetric.
 \[
 \Psi(r_1, r_2) = \Psi(r_2, r_1)
 \]
- If ground state is non-degenerate (true if space is “ergodic” or connected).
- Then we can assume $\psi(r_1, r_2)$ is real, positive and symmetric by fixing the “gauge.”
- Why? Otherwise we could always lower the energy.
 \[
 \therefore \Psi = e^{-u(r_1, r_2)} \quad u(r_1, r_2) = u(r_2, r_1)
 \]

Ceperley Variational Methods
H2 molecule:

\[f(r) = \exp(-r) \]

\[\Psi_{RHF} = \phi(r_1)\phi(r_2) \quad \phi(r) = f_a(r) + f_b(r) \]

\[\Psi_{HL} = f_a(r_1)f_b(r_2) + f_b(r_1)f_a(r_2) \]

\[\Psi_e = \Psi_{HL}e^{-u(r_1,r_2)} \]

\[\lim_{r_1 \to r_2} u(r_1,r_2) = u_0 - \frac{1}{2}|r_1 - r_2| \]

Cusp condition gives derivative of \(u(r_1,r_2) \) whenever two electrons approach each other.

Trial function for bosons: “Jastrow” or pair product

- We want finite variance of the local energy.
- Whenever 2 atoms get close together wavefunction should vanish.
- The pseudopotential \(u(r) \) is similar to classical potential
- Local energy has the form: \(G \) is the pseudoforce:

\[
\psi(R) = \prod_{i<j} e^{-u(r_{ij})} \\
E_\psi(R) = \sum_{i<j} [v(r_{ij}) - 2\lambda \nabla^2 u(r_{ij})] - \lambda \sum_i G_i^2 \\
G_i = \sum_j \nabla_j u(r_{ij})
\]

If \(v(r) \) diverges as \(\varepsilon r^m \) how should \(u(r) \) diverge? Assume:
\(u(r) = \alpha r^{m-1} \)

Keep N-1 atoms fixed and let 1 atom approach another and analyze the singular parts of the local energy.

Gives a condition on \(u \) at small \(r \).

For Lennard-Jones 6-12 potential, Jastrow goes as \(m=5 \)

Ceperley Variational Methods
Fermions: antisymmetric trial function

- At mean field level the wavefunction is a Slater determinant. Orbitals for homogenous systems are a filled set of plane waves.
- We can compute this energy analytically (HF).
- To include correlation we multiply by a pseudopotential. We need MC to evaluate properties.
- New feature: how to compute the derivatives of a determinant and sample the determinant. Use tricks from linear algebra.
- Reduces complexity to $O(N^2)$.

\[
\Psi_s(R) = \text{Det}\left\{e^{ik_i r_i}\eta_i(\sigma_j)\right\}
\]

\[
PBC: \quad k \cdot L = 2\pi n + \{\theta\}
\]

\[
\Psi_{SJ}(R) = \text{Det}\left\{e^{ik_r r_i}e^{-\sum_{ij} u(r_{ij})}\right\}
\]

Slater-Jastrow trial function.

\[
\text{det}\left\{\phi_i(r_j')\right\} = \text{det}\left\{\phi_i(r_j)\right\}\sum_i \phi_i(r_j') M_{ij}
\]

\[
1 = \frac{\partial \text{det}(M)}{\partial a} = \text{Tr}\left\{M^{-1} \frac{\partial M}{\partial a}\right\}
\]

Ceperley Variational Methods

VARIATIONAL MONTE CARLO CODE

<table>
<thead>
<tr>
<th>Call</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>initstate</code> (s_old)</td>
<td>Initialize the state</td>
</tr>
<tr>
<td><code>psil2</code> (s_old)</td>
<td>Evaluate psi_trial</td>
</tr>
<tr>
<td><code>sample</code> (s_old, s_new, T_new, 1)</td>
<td>Sample new state</td>
</tr>
<tr>
<td><code>psil2</code> (s_new)</td>
<td>Evaluate psi_trial</td>
</tr>
<tr>
<td><code>sample</code> (s_new, s_old, T_old, 0)</td>
<td>Find transition prob. for going backward</td>
</tr>
<tr>
<td><code>A = (p_new/T_new)/(p_old/T_old)</code></td>
<td>Acceptance prob.</td>
</tr>
<tr>
<td><code>if (A > rand (i))</code></td>
<td>Accept the move</td>
</tr>
<tr>
<td><code>{</code></td>
<td>Collect statistics</td>
</tr>
<tr>
<td><code>s_old=s_new</code></td>
<td></td>
</tr>
<tr>
<td><code>p_old=p_new</code></td>
<td></td>
</tr>
<tr>
<td><code>naccept = naccept +1</code></td>
<td></td>
</tr>
<tr>
<td><code>call averages (s_old) {</code></td>
<td></td>
</tr>
</tbody>
</table>

Ceperley Variational Methods
Scalar Properties, Static Correlations and Order Parameters

What do we get out of a simulation? Energy by itself doesn’t tell you very much.
Other properties
- do NOT have an upper bound property
- Only first order in accuracy
EXAMPLES
- Static properties: pressure, specific heat etc.
- Density
- Pair correlation in real space and fourier space.
- Order parameters and broken symmetry: How to tell a liquid from a solid
- Specifically quantum: the momentum distribution

Pair Correlation Function, g(r)

Primary quantity in a liquid is the probability distribution of pairs of particles. Given a particle at the origin what is the density of surrounding particles
\[g(r) = \langle \sum_{i<j} \delta (r_i - r_j - r) \rangle \]
Density-density correlation function

From g(r) you can calculate all pair quantities (potential, pressure, …)
\[V = \sum_{i<j} v(r_{ij}) = \frac{N\rho}{2} \int d^3r v(r)g(r) \]

A function gives more information than a number!
g(r) in liquid and solid helium

- First peak is at inter-particle spacing. (shell around the particle)
- goes out to \(r < \frac{L}{2} \) in periodic boundary conditions.

(The static) structure factor \(S(k) \)

- The Fourier transform of the pair correlation function is the structure factor

\[
S(k) = \frac{1}{N} \left\langle |\rho_k|^2 \right\rangle \quad \text{where} \quad \rho_k = \sum_{i=1}^{N} e^{ik \cdot r_i} \\
S(k) = 1 + \rho \int dr e^{ik \cdot r} \left(g(r) - 1 \right)
\]

problem with (2) is to extend \(g(r) \) to infinity
- \(S(k) \) is measured in neutron and X-Ray scattering experiments.
- Can provide a direct test of the assumed potential.
- Used to see the state of a system:
 - liquid, solid, glass, gas? (much better than \(g(r) \))
- Order parameter in solid is \(\rho_G \) where \(G \) is a particular wavevector (reciprocal lattice vector).

Ceperley Variational Methods
Momentum Distribution

- Momentum distribution
 - Classically momentum distribution is always a Gaussian
 - Non-classically showing effects of bose or fermi statistics
 - Fourier transform is the single particle off-diagonal density matrix
- Compute with McMillan Method.
- For fermions we need to use the determinant update formulas to find the effect of the movement of 1 electron.

\[
n(r,r') = \frac{1}{2^N} \int dr_2 ... dr_N \psi^*(r,r_2...)\psi(r',r_2...)
\]

\[
= \begin{pmatrix}
\psi^*(r,r_2...)
\end{pmatrix}
\begin{pmatrix}
\psi(r',r_2...)
\end{pmatrix}
\]

Derivation of momentum formula

- Suppose we want the probability \(n_k \) that a given atom has momentum \(hk \).
- Find wavefunction in momentum space by FT wrt all the coordinates and integrating out all but one electron

\[
Pr(k_1, ..., k_N) = \left| \int dR \ e^{-i(k_1 r_1 + ... + k_N r_N)} \Psi(R) \right|^2
\]

\[
n_k = \int dk_2 ... dk_N \ Pr(k, k_2, ..., k_N)
\]

- Expanding out the square and performing the integrals we get.

\[
n_k = \int \frac{d^3rd^3s}{(2\pi)^3} \exp(-i(k-r))n(r,s) = \int \frac{d^3r}{(2\pi)^3} e^{-ikr}n(r)
\]

Where:

\[
n(r,s) = \frac{V}{Q} \int dr_2 ... dr_N \psi^*(r,r_2...r_N)\psi(s,r_2...r_N)
\]

(states occupied with the Boltzmann distribution.)

For a homogeneous system, \(n(r,s) = n(|r-s|) \)
The electron gas

D. M. Ceperley, Phys. Rev. B 18, 3126 (1978)

- Standard model for electrons in metals
- Basis of DFT.
- Characterized by 2 dimensionless parameters:
 - Density
 - Temperature

\[r_s = a / a_0 \]
\[\Gamma = e^2 / Ta \]

- What is energy?
- When does it freeze?
- What is spin polarization?
- What are properties?

\[H = -\frac{\hbar^2}{2m} \sum_i \nabla_i^2 + \sum_{i<j} \frac{1}{r_{ij}} \]

\[\log(r_s) \]

\[\Gamma < r_s \text{ classical OCP} \]
\[\Gamma = 175 \text{ classical melting} \]

Charged systems

How can we handle charged systems?

- Just treat like short-ranged potential: cutoff potential at \(r > L/2 \).
- Problems:
 - Effect of discontinuity never disappears: \((1/r) (r^2) \) gets bigger.
 - Will violate Stillinger-Lovett conditions because Poisson equation is not satisfied
- Image potential solves this:

\[V_i = \Sigma v(r_i - r_j + nL) \]

- But summation diverges. We need to resum. This gives the ewald image potential.
- For one component system we have to add a background to make it neutral.
- Even the trial function is long ranged and needs to be resummed.
Ewald summation method

- Key idea is to split potential into k-space part and real-space part. We can do since FT is linear.

\[V = \sum_{r \neq L} \phi(r_i - r_j + nL) \]

\[V = \sum_k \phi_k \left(|\rho_k|^2 - N \right) \text{ where } \rho_k = \sum_i e^{ikr_i} \]

and \(\phi_k = \frac{1}{\Omega} \int dr e^{ikr} \phi(r) \)

For \(\phi(r) = e^2/\tau \Rightarrow \phi_k = \frac{4\pi e^2}{k^2} \)

- Bare potential converges slowly at large \(r \) (in r-space) and at large \(k \) (in k-space)

Classic Ewald

- Split up using Gaussian charge distribution

\(\phi(r) = \frac{erfc(\kappa r)}{r} \) decays fast at large \(r \)

\(\phi_k = \frac{4\pi e^{-ik/2\epsilon^2}}{k^2} \) decays fast at large \(k \)

\(\kappa \) = convergence parameter

- If we make it large enough we can use the minimum image potential in r-space.

- Extra term for insulators:

\[V_{dipole} = \frac{2\pi}{(2\epsilon + 1)\Omega} \left| \sum_i \mu_i \right|^2 \]
Jastrow factor for the e-gas

- Look at local energy either in r space or k-space:
- r-space as 2 electrons get close gives cusp condition: \(du/dr |_{r_0} = -1 \)
- K-space, charge-sloshing or plasmon modes.

\[
2 \rho u_k = \sqrt{\frac{V_k}{\lambda k}} \propto \frac{1}{k^2}
\]

- Can combine 2 exact properties in the Gaskell form. Write \(E \) in terms of structure factor making “random phase approximation.” (RPA).

\[
2 \rho u_k = -\frac{1}{S_k} + \sqrt{\frac{1}{S_k} + \frac{V_k}{\lambda k^2}} \quad S_k = \text{ideal structure factor}
\]

- Optimization can hardly improve this form for the e-gas in either 2 or 3 dimensions. RPA works better for trial function than for the energy.
- NEED EWALD SUMS because potential trial function is long range, it also decays as \(1/r \), but it is not a simple power.

\[
\lim_{r \to \infty} u(r) = \begin{cases} r^{-1} & \text{3D} \\ r^{-1/2} & \text{2D} \\ \log(r) & \text{1D} \end{cases}
\]

Long range properties important
- Give rise to dielectric properties
- Energy is insensitive to \(u_k \) at small \(k \)
- Those modes converge \(t \sim 1/k^2 \)

Summary of Variational (VMC)

![Summary of Variational (VMC)](image)
Summary and problems with variational methods

- Powerful method since you can use any trial function
- Scaling (computational effort vs. size) is almost classical
- Learn directly about what works in wavefunctions
- No sign problem
- Optimization is time consuming
- Energy is insensitive to order parameter
- Non-energetic properties are less accurate. O(1) vs. O(2) for energy.
- Difficult to find out how accurate results are.
- Favors simple states over more complicated states, e.g.
 - Solid over liquid
 - Polarized over unpolarized

What goes into the trial wave function comes out! “GIGO”

We need a more automatic method! Projector Monte Carlo

Ceperley Variational Methods